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Snakes evolved from lizards but have dramatically different eyes. These differences are cited widely as compelling
evidence that snakes had fossorial and nocturnal ancestors. Their eyes, however, also exhibit similarities to those of
aquatic vertebrates. We used a comparative analysis of ophthalmic data among vertebrate taxa to evaluate alter-
native hypotheses concerning the ecological origin of the distinctive features of the eyes of snakes. In parsimony and
phenetic analyses, eye and orbital characters retrieved groupings more consistent with ecological adaptation rather
than accepted phylogenetic relationships. Fossorial lizards and mammals cluster together, whereas snakes are
widely separated from these taxa and instead cluster with primitively aquatic vertebrates. This indicates that the
eyes of snakes most closely resemble those of aquatic vertebrates, and suggests that the early evolution of snakes
occurred in aquatic environments. © 2004 The Linnean Society of London, Biological Journal of the Linnean Soci-
ety, 2004, 81, 469–482.
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INTRODUCTION

Limbless, snake-like bodies evolved independently
among numerous squamate lineages, many of which
exhibit terrestrial and fossorial or semifossorial ecol-
ogies (Wiens & Slingluff, 2002). One might infer from
these observations that similar ecologies produced
limblessness in snakes, but recent fossil discoveries
(Caldwell & Lee, 1997; Lee, Caldwell & Scanlon, 1999;
Rage & Escuillie, 2000; Scanlon & Lee, 2000; Tchernov
et al., 2000) revived an alternative hypothesis that
snake ancestors lived in marine environments (Cope,
1869; Nopsca, 1923; McDowell, 1972). Specifically,
Cretaceous marine snakes with hind limbs, hypothe-

sized to be transitional between lizard and snake body
plans, provided the impetus for new phylogenetic
analyses of snakes and their relatives. Some studies
found these limbed marine snakes to be basal snakes,
supporting a marine origin (Caldwell & Lee, 1997; Lee
et al., 1999; Rage & Escuillie, 2000; Scanlon & Lee,
2000). Others concluded that they were not primitive
but advanced (macrostomatan) snakes (Zaher, 1998;
Zaher & Rieppel, 1999; Rieppel et al., 2003) that had
re-evolved legs (Tchernov et al., 2000; Zaher & Riep-
pel, 2000). The latter analyses placed the extant, bur-
rowing blindsnakes and anilioids as the most basal
snakes, thus reaffirming the traditional view of a bur-
rowing origin of snakes.

Other evidence relevant to question of snake ori-
gins comes from comparative vertebrate ophthalmol-
ogy (Fig. 1). Specifically, the extreme structural and
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functional differences between the eyes of lizards
(Fig. 1A, B) and those of snakes (Fig. 1C, D) implies
that snake eyes were dramatically altered during
their origin from lizard ancestors (Walls, 1940). The
most substantial differences involve the structures
directly associated with focusing an image onto the
retina. Snakes focus by applying pressure to the vit-
reous body via enlarged peripheral iris muscles, thus
forcing a rigid, spherical lens forward within the eye-
ball. Relaxation of those muscles results in passive
retraction of the lens (Michel, 1933; Sivak, 1977).
That contrasts with the lizard mechanism in which
robust ciliary muscles embedded in the choroid and
anchored to bony elements in the sclera squeeze a
thick annular pad bounding the soft, flattened lens
(Walls, 1942).

Given that lizards are ancestral to snakes, and that
many superficially snake-like lizards are burrowers,
one explanation for these ophthalmic observations
was that snakes went through a burrowing phase in
their origin, and in that low-light environment lost the
typical lizard mechanism for precise image focusing.
After the functional and structural degeneration of
their eyes, snakes re-colonized light-rich environ-
ments and evolved a totally different focusing mecha-
nism. That explanation is widely cited, with some
reservations and modifications (Bellairs & Under-
wood, 1951; Underwood, 1970) as compelling evidence
that early snakes had greatly reduced eyes and fosso-
rial ancestors (Greene, 1997; Coates & Ruta, 2000;
Zaher & Rieppel, 2000). The functional degeneration
of snake eyes during their early evolution also is con-

Figure 1. Functional anatomy of lizard (A) and snake (B) eyes, illustrating major differences between the two general
types. C, lizards focus by contracting large ciliary muscles (bm, cm) anchored to scleral ossicles (so) thereby applying
pressure to the lateral surface of the lens (ln) via the annular pad (ap). D, snakes focus by moving their lens forward via
increased pressure on the vitreous (vi) due to peripheral iris muscle (im) contraction. Abbreviations: an, anterior pad; bm,
Brücke’s ciliary muscle; cb, ciliary body; ch, choroid; cm, Crompton’s ciliary muscle; cn, conus papilliaris; co, cornea; el,
eye lid; fv, fovea; id, iris dilator muscle; is, iris sphincter muscle; ln, lens; re, retina; sc, scleral cartilage; sl, sclera; sp,
spectacle; vi, vitreous; zf, zonular fibres.
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sistent with the similar fusion or loss of neural layers
in the optic tectum observed in snakes and squamate
species with reduced visual function (Senn & North-
cutt, 1973).

Snake eyes, however, also bear many intriguing
similarities to the eyes of aquatic vertebrates. Primi-
tively aquatic animals, such as fishes and amphibians,
have a rigid spherical lens that focuses by movement,
usually toward the cornea, accomplished using one or
more subsets of iridial musculature directly attached
to the lens epithelium (Walls, 1942; Fernald, 1990).
Secondarily aquatic animals, including mammals and
birds, also have more spherical lenses than their ter-
restrial relatives (Walls, 1942; Sivak, 1975). Among
aquatic mammals, whales accommodate by forward
lens movement (Supin, Popov & Mass, 2001), and a
similar mechanism was proposed for pinnepeds (West
et al., 1991). Aquatic turtles and diving birds such as
cormorants use robust iris sphincter muscles to
squeeze the anterior surface of the lens to focus
underwater.

In proposing similarities between the eyes of snakes
and burrowing reptiles, Walls (1940) did not compare
the eyes of snakes to those of the only extant marine
lizard, the Galapagos marine iguana, Amblyrhynchus
cristatus (Bell), whose eyes remain unstudied, nor did
he compare them to other aquatic vertebrates. Simi-
larly, aquatic species in general and the marine
iguana, in particular, have yet to be investigated with
regard to visual centres in the brain. Thus, the marine
origin hypothesis has never been evaluated using com-
parative ophthalmic data. Here, we apply parsimony
and phenetic clustering methods to ophthalmic and
orbital data across a wide range of vertebrate taxa to
investigate the probable ecological conditions respon-
sible for snake eye anatomy.

MATERIAL AND METHODS

We constructed a matrix containing 69 ophthalmic and
orbital characters (see Appendix) coded for 53 vert-
ebrate taxa and compiled from extensive literature
(Walls, 1942; Rochon-Duvigneaud, 1943; Duke-Elder,
1958; Underwood, 1970; Sillman, 1973; Sivak, 1977;
Fite & Lister, 1981; Fernald, 1990; Murphy et al.,
1990; Schmid, Howland & Howland, 1992; Pardue,
Sivak & Kovacs, 1993; Supin et al., 2001). These were
subjected to parsimony analysis (which unites taxa
based on derived similarity) and phenetic analysis
(which groups taxa based on overall similarity).

In the parsimony analyses, 11 multistate characters
were treated as ordered (according to morphoclines)
and the remainder as unordered. Additionally, we per-
formed analyses with all multistate characters treated
as both ordered and unordered. Prior to this, we iden-
tified and removed seven cladistically uninformative

characters. Multiple searches on the resulting matrix
were performed using the Parsimony Ratchet (Nixon,
2000) in the tree-searching program NONA (Goloboff,
1999). In Winclada (Nixon, 2002), we scanned the
trees produced by the Parsimony Ratchet for unsup-
ported nodes (which were collapsed) and created a
strict consensus of the remaining trees. We expected
snakes to align either with varanoid lizards, if eye
characters reflected mainly shared ancestry, or unre-
lated fossorial or aquatic taxa if the characters
reflected mainly convergent adaptation.

To determine which characters were responsible for
each cluster in the consensus tree, the distribution of
each of the 62 informative characters was analysed
separately under accelerated and delayed optimiza-
tion strategies. Next, we assembled several vertebrate
trees from other studies (Sibley & Ahlquist, 1990;
Helfman, Collette & Facey, 1997; Lee, 2000; Murphy
et al., 2001; Scally et al., 2001; Zug, Vitt & Caldwell,
2001) and synthesized a traditional (though not uni-
versally accepted) topology for vertebrates. Using that
tree, we performed character optimization using our
ophthalmic data to identify lineages at the end of long
branches, i.e. which had undergone extensive eye
evolution.

Finally, we converted the matrix to binary data for
each character state and constructed a distance
matrix from those data in SPSS (2002) statistical soft-
ware, using the ‘pattern difference’ algorithm for cal-
culation of dissimilarity. The distance matrix was
inspected directly, rather than forced into a cluster
diagram (phenogram), because such clustering usu-
ally distorts phenetic distances. We subdivided taxa
into four ecological categories - aquatic, amphibious,
terrestrial, and fossorial - and then ranked distances
between each taxon and separately for scolecophidi-
ans (blindsnakes) and alethinophidians (advanced
snakes). We also calculated the median rank for the
distances within each ecological category as a score of
overall similarity between taxa in that category and
either blindsnakes or advanced snakes.

RESULTS

In the consensus tree from the analysis with selected
characters ordered (Fig. 2A), taxa tend to align with
each other based upon similar ecologies rather than
accepted phylogenetic relationships. In particular,
mammals and reptiles with reduced eyes emerge at
the base of the tree. Snakes, which might be expected
to align either with lizards, or with eye-reduced forms,
instead cluster with aquatic forms, nesting deeply
within fishes and caecilian amphibians.

Three characters that unite snakes with primitively
aquatic taxa (fishes and caecilians) are a flattened cor-
nea, a thickened corneal margin, and a spherical lens.
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Figure 2. A, strict consensus of 12 most parsimonious trees from the matrix of 69 ophthalmic and orbital characters, each
with length = 295, consistency index = 0.35, retention index = 0.77, shows how ophthalmic characters reflect common
ecology, rather than common ancestry, among vertebrates. B, a traditional vertebrate phylogeny synthesized from other
studies and data (Sibley & Ahlquist, 1990; Helfman et al., 1997; Lee, 2000; Murphy et al., 2001; Scally et al., 2001; Zug
et al., 2001): length = 405, consistency index = 0.25, retention index = 0.64. In both trees, the two groups of snakes are at
the top. Grey boxes show the distribution and relationships within the lepidosaur clade for both trees. Numbers above
each branch length indicate that length for optimized ophthalmic and orbital characters. Branch lengths of zero indicate
nodes unsupported by ophthalmic characters.
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These characters are shared by all primitively aquatic
animals, and also are expressed in secondarily aquatic
animals to a greater degree than in their terrestrial
relatives (Walls, 1942; Sivak, 1975). They thus appear
to be associated with aquatic habits. Another charac-
ter uniting snakes with the aquatic clade is the pres-
ence of blood vessels on the surface of the retina. These
vessels on the inner surface of the retina nourish the
vitreous humour and retina. In snakes, they are likely
to represent the arrest of a developmental programme
(Jokl, 1923; Walls, 1942), but as they are not also
expressed in secondarily aquatic forms, the correla-
tion of this character with aquatic habits is less
compelling.

Three other characters uniting snakes with the
aquatic clade are losses (in snakes) of various land
vertebrate synapomorphies: the lachrymal gland, nic-
titans, and retractor bulbi muscles. Lachrymal glands,
which usually secrete an aqueous fluid, were lost by
numerous tetrapod lineages including some whales,
murid rodents, penguins, some owls, Sphenodon, some
geckos, pygopodids (legless geckoes), and snakes. The
nictitans, or nictitating membrane also was lost by
numerous taxa of varying ecologies: whales, echidnas,
opossums, marsupial moles, largely burrowing squa-
mates such as pygopodids, amphisbaenians, and dib-
amids, as well as chameleons and snakes. Retractor
bulbi muscles are also synapomorphic for tetrapods
and were subsequently lost by snakes and birds, and
co-opted by caecilian amphibians to manipulate their
tentacles. The broad ecological distribution of these
three characters makes them ambiguous regarding
the ecological origin of snakes.

Branch lengths on the synthesized vertebrate phy-
logeny (Fig. 2B) were calculated for those data opti-
mized only for unambiguous changes. The longest
branch (length = 27) leads to snakes (Scolecophidia
plus Alethinophidia). The next three longest branches
include those for dibamid and amphisbaenian squa-
mates (length = 17), marsupial moles (length = 13),
and talpid moles (length = 10). Both delayed and
accelerated optimization identified the same long
branches. Thus, snakes have indeed undergone sub-
stantial ophthalmic change, as have some burrowing
forms. However, the previous results show that the
actual nature of the changes is very different. Also,
many of the nodes in Figure 2B are unsupported by
any synapomorphies in ophthalmic characters, fur-
ther demonstrating the lack of correlation between
eye anatomy and phylogeny.

In the phenetic analysis, the eyes of blindsnakes
and advanced snakes were, as expected, most similar
to one another. When compared to other taxa, the eyes
of advanced snakes shared the greatest similarity
with mainly aquatic taxa: sharks, whales, sirenians,
gars and lampreys, as well as caecilians, shrews, mice,

and opossums (Table 1). The eyes of blindsnakes were
most similar to those of caecilians, shrews, mice, lung-
fishes, echidnas, lampreys, hagfishes, dibamids, and
sirenians (Table 1). The median ranks (Table 2) for
distances between both advanced snakes and blind-
snakes with the remaining taxa subdivided into eco-
logical categories were least (nearest) for aquatic
animals, indicating greatest overall similarity to
aquatic taxa. The next greater median between blind-
snakes and the remaining taxa was for fossorial
groups, followed by amphibious taxa, and lastly ter-
restrial forms. For advanced snakes, the next greatest
medians were for fossorial and terrestrial groups
(tied), and lastly by amphibious taxa. Thus, the eyes of
both groups of snakes are most similar to the eyes of
aquatic rather than fossorial taxa, though the eyes of
blindsnakes are also somewhat similar to those of fos-
sorial species, as is expected given other convergent
features (Lee, 1998).

DISCUSSION

It is not surprising that previous workers (Walls, 1940;
Bellairs & Underwood, 1951; Underwood, 1970) con-
sidered the highly modified snake eye as evidence of a
fossorial or sheltering ancestor, given that ophthalmic
and orbital characters show the greatest degree of
change among burrowing taxa and snakes (Fig. 2B).
However, the exact nature of the changes in snakes,
and in burrowing taxa, are very different (Fig. 2A).
Previous studies only compared snake eyes with those
of lizards, and thus overlooked the striking ocular sim-
ilarities between snakes and a variety of primarily
aquatic vertebrates.

The placement of caecilians with snakes in our par-
simony consensus tree reflects the ambiguity that has
plagued attempts to understand the ecological forces
that moulded the unique snake body plan. Caecilians
contain species that are either burrowing, aquatic, or
both and this cluster thus fits predictions of either an
aquatic or burrowing origin of snakes. Indeed, these
hypotheses are not mutually exclusive (Nopsca, 1923;
McDowell, 1972; Rieppel, 1988). However, the nesting
of the snake-caecilian ‘clade’ within a plexus of aquatic
vertebrates (fish) strongly supports the aquatic
hypothesis for snake origins. None of the characters
supporting the fish-caecilian-snake cluster are
shared with exclusively burrowing taxa. In contrast,
three characters are shared with exclusively aquatic
or amphibious taxa: the flattened cornea, thickened
corneal margin, and spherical lens. Moreover, the loss
of the retractor bulbi muscles in snakes, resulting in a
condition convergent with primitively aquatic ani-
mals, does not necessarily imply visual reduction,
since a similar loss has occurred in large-eyed forms
with great visual acuity (birds). Overall, these oph-
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thalmic characters add strength to the hypothesis that
snakes had aquatic ancestors.
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APPENDIX

CHARACTER STATES

Numbers correspond to the character numbers (col-
umns) in the character by taxon matrix. Numbers in
parentheses represent character states. *indicates
characters coded as ordered. All remaining characters
were unordered. †indicates characters found to be
uninformative for our parsimony analysis.

1† Eyeball shape: hemispherical (0), flattened tubu-
lar (1).

2* Lachrymal gland: absent (0), small (1), large (2)
3* Harderian gland: absent (0), small (1), large (2)
4 Orbital drainage: none (0), soft tissue canal (1),

bony canal (2)
5 Eyelid mobility: both mobile (0), reduced mobility

in one lid (1), reduced mobility in both (2), lids
fused (3)

6 Eyelid transparency: both opaque (0), one eyelid
transparent (1), both eyelids transparent (2)

7 Nictitating membrane: none (0), actively mobile
(1), passively mobile (2), immobile (3)

8 Inferior oblique: absent (0), present (1)
9 Superior oblique: absent (0), present (1)

10 Inferior rectus: absent (0), present (1)
11 Superior rectus: absent (0), present (1)
12 Medial rectus: absent (0), present (1)
13 Lateral rectus: absent (0), present (1)
14 Retractor bulbi: absent (0), present (1), co-opted

(2)
15 Levator bulbi: absent (0), present (1), co-opted (2)
16 Bursalis: absent (0), present (1), co-opted (2)
17 Protractor lentis (transversalis): absent (0),

present (1)
18† Retractor lentis: absent (0), present (1)
19 Spectacle: none (0), primary (1), secondary (2),

tertiary (3)
20 Choroid and sclera: fused (0), separate (1)
21 Corneal curvature: flattened (0), convex but little

or no sulcus (1), extremely convex with distinct
sulcus (2)

22 Corneal margin: as thick as centre (0), thicker
than centre (1)

23 Corneal epithelium: stratified squamous (0),
cornified stratified squamous (1)

24 Descemet’s lamina and mesothelium: absent (0),
present (1)

25 Corneal substantia propria: absent (0), present
(1)

26 Autochthonous layer of cornea: absent (0),
present (1)

27† Corneal pigment: none (0), present (1)
28 Pectinate or annular ligament: absent (0),

present (1)
29† Aqueous production: diffusion through cornea (0),

secreted internally (1)
30 Aqueous drainage: indirect diffusion (0), general

lymphatic (1), canal of Schlemm (2)
31* Scleral cartilage: absent (0), reduced (1), robust

(2)
32* Scleral ossicles: absent (0), reduced (1), robust (2)
33 Iris muscle fibres: absent (0), smooth (1), striated

(2)
34 Pupillary contraction: none (0), slow dilation,

slow contraction (1), slow dilation, fast contrac-
tion (2), fast dilation and contraction (3)

35 Lens attachment: none (0), zonular fibres only (1),
distinct ringwulst (2), reduced ringwulst (3),
anterior pad (4)

36* Lens shape: spherical (0), slightly lenticular (1),
markedly lenticular (2) subspherical along the
equatorial axis (3)

37 Lens pigment: none (0), yellow (1)
38 Lens sutures: absent (0), present (1)
39* Pigment epithelium: amelanistic (0), sparsely

melanized (1), heavily melanized (2)
40 Photomechanical response of pigment epithe-

lium: absent (0), present (1)
41* Central fovea: absent (0), shallow (1), deep cen-

tral (2)
42 Rods: absent (0), present (1)
43 Cone: absent (0), present (1)
44 Double cones: absent (0), present (1)
45 Double rods: absent (0), present (1)
46 Myoid contractility: none (0), present (1)
47 Oil droplets: absent (0), present (1)
48 Parabaloids: absent (0), present (1)
49 Rhodopsin or porphyropsin: absent (0), present

(1)
50* Optic nerve condition: fascicular (0), some septa

(1), no septa (2)
51† Choroidal vasculature: none (0), present (1)
52 Retinal vasculature: none (0), present (1)
53* Conus papilliaris or pecten absent (0), small or

simple (1) large or elaborate (2)
54 Corneal blood vessels: none (0), present (1)
55 Tapetum: absent (0), choroidal (1), retinal (2)
56 Accessory focus: absent (0), lens deformation by

iris sphincter (1), stenopaic pupil (2)
57* Temporal fovea: absent (0), shallow (1), deep (2)
58 Pupil shape when dilated: round (0), vertical

ellipse (1), horizontal ellipse (2)
59† Pupillary operculum: absent (0), present (1)
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60* Iris sphincter: absent (0), normal (1), robust (2)
61 Iris dilator: absent (0), present (1)
62 Pupil shape when contracted: round (0), vertical

slit (1), horizontal slit (2)
63 Lens deformation: none (0), squeezed by ciliary

contraction (1), elastic recoil during ciliary con-
traction (2)

64 Lens movement rearward: none (0), passive (1),
active (2)

65 Lens movement forward: none (0), passive (1),
active (2)

66 Deformation of eyeball: none (0), external mus-
cles (1), internal muscles (2)

67 Brücke’s ciliary muscle: absent (0), smooth (1),
striated (2)

68 Crompton’s ciliary muscle: absent (0), smooth (1),
striated (2)

69 Muller’s circular ciliary muscle: absent (0),
present (1)
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DATA MATRIX

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Myxiniformes 0 0 0 – – – 0 0 0 0 0 0 0 0
Petromyzontiformes 0 0 0 – – – 0 1 1 1 1 1 1 0
Chondrichthyes 0 0 0 – 0 0 1 1 1 1 1 1 1 0
Acipenseriformes 0 0 0 – – – 0 1 1 1 1 1 1 0
Semionotiformes 0 0 0 – – – 0 1 1 1 1 1 1 0
Latimeria 0 0 0 – – – 0 1 1 1 1 1 1 0
Dipnoi 0 0 0 – – – 0 1 1 1 1 1 1 0
Teleostei [02] 0 0 – 0 2 0 1 [12] 1 [12] [12] [12] 0
Anura 0 0 [01] 1 [01] 0 2 1 1 1 1 1 1 1
Caudata 0 1 1 1 [012] 0 [02] 1 1 1 1 1 1 1
Gymnophiona 0 0 2 ? – – 0 1 1 1 1 2 1 2
Ornithorhyncus 0 1 2 2 0 0 2 1 1 1 1 1 1 1
Tachyglossidae 0 1 1 2 0 0 0 1 1 1 1 1 1 1
Didelphidae 0 1 1 2 0 0 0 1 1 1 1 1 1 1
Macropodidae 0 1 1 2 0 0 2 1 1 1 1 1 1 1
Notoryctidae 0 ? ? ? 2 0 0 0 0 0 0 0 0 0
Soricidae 0 2 1 2 1 0 3 1 1 1 1 1 1 1
Talpidae 0 2 1 2 2 0 3 0 0 0 0 0 0 0
Primates 0 2 1 2 1 0 3 1 1 1 1 1 1 1
Felidae 0 2 1 2 1 0 2 1 1 1 1 1 1 1
Mustelidae 0 2 1 2 1 0 2 1 1 1 1 1 1 1
Sirenia 0 0 2 0 2 0 2 1 1 1 1 1 1 1
Pinnipedia 0 1 2 0 1 0 2 1 1 1 1 1 1 1
Cetacea 0 [01] 2 0 [12] 0 0 1 1 1 1 1 1 1
Sciuridae 0 2 1 2 1 0 3 1 1 1 1 1 1 1
Muridae 0 0 2 2 1 0 3 1 1 1 1 1 1 1
Cheloniidae 0 2 2 2 1 0 1 1 1 1 1 1 1 1
Chelydridae 0 1 2 2 1 0 1 1 1 1 1 1 1 1
Dermochelyidae 0 2 2 2 1 0 1 1 1 1 1 1 1 1
Emydidae 0 1 2 2 1 0 1 1 1 1 1 1 1 1
Testudinidae 0 1 2 2 1 0 1 1 1 1 1 1 1 1
Trionychidae 0 1 2 2 1 0 1 1 1 1 1 1 1 1
Sphenodontidae 0 0 2 2 1 0 1 1 1 1 1 1 1 1
Scincidae 0 1 2 2 [13] [012] [01] 1 1 1 1 1 1 1
Anniellidae 0 1 2 2 0 0 ? 1 1 1 1 1 1 1
Lacertidae 0 2 2 2 1 [01] 1 1 1 1 1 1 1 1
Dibamidae 0 ? ? ? – – 0 0 0 0 0 0 0 0
Amphisbaenia 0 0 2 2 – – 0 0 0 0 0 0 0 0
Iguanidae 0 2 2 2 1 [01] 1 1 1 1 1 1 1 1
Agamidae 0 2 2 2 1 [01] 1 1 1 1 1 1 1 1
Chamaeleonidae 0 2 2 2 2 0 0 1 1 1 1 1 1 1
Pygopodidae 0 0 2 2 3 2 0 1 1 1 1 1 1 1
Gekkonidae 0 [01] 2 2 [123] [012] [01] 1 1 1 1 1 1 1
Lanthanotidae 0 2 2 2 1 1 1 1 1 1 1 1 1 1
Varanidae 0 2 2 2 1 0 1 1 1 1 1 1 1 1
Scolecophidia 0 0 2 2 3 2 0 1 1 1 1 1 1 0
Alethinophidia 0 0 2 2 3 2 0 1 1 1 1 1 1 0
Crocodylia 0 1 2 2 1 0 1 1 1 1 1 1 1 1
Passeriformes 0 2 1 2 0 0 1 1 1 1 1 1 1 0
Strigiformes 2 [01] 2 2 0 0 1 1 1 1 1 1 1 0
Falconiformes 0 2 2 2 0 0 1 1 1 1 1 1 1 0
Phalacrocoracidae 0 1 2 2 0 0 1 1 1 1 1 1 1 0
Sphenisciformes 0 0 2 2 0 0 1 1 1 1 1 1 1 0
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DATA MATRIX Continued

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Myxiniformes 0 0 0 0 ? 0 1 – – – – – – 0
Petromyzontiformes 0 0 0 0 1 1 0 1 0 1 0 0 0 1
Chondrichthyes 0 0 1 0 0 1 0 1 0 1 1 0 [01] 0
Acipenseriformes 0 0 1 0 0 1 0 1 0 1 1 0 0 1
Semionotiformes 0 0 1 0 0 1 0 1 0 1 1 1 0 1
Latimeria 0 0 0 0 0 1 0 0 ? ? ? ? 1 ?
Dipnoi 0 0 1 0 2 1 1 0 0 1 1 0 0 0
Teleostei 0 0 1 1 [23] 1 0 0 0 1 1 1 [01] 1
Anura 1 0 1 0 [01] 1 1 1 0 1 1 0 0 0
Caudata 1 0 1 0 [01] 1 [01] 1 0 1 1 0 0 0
Gymnophiona 2 0 0 0 1 1 1 0 0 1 1 0 0 0
Ornithorhyncus 0 0 0 0 0 1 1 1 0 1 1 0 0 0
Tachyglossidae 0 0 0 0 0 1 1 0 1 1 1 0 0 0
Didelphidae 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Macropodidae 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Notoryctidae 0 0 0 0 0 ? ? ? ? ? ? ? 0 0
Soricidae 0 0 0 0 0 1 1 0 0 1 1 0 0 0
Talpidae 0 0 0 0 0 1 1 0 0 0 0 0 0 0
Primates 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Felidae 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Mustelidae 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Sirenia 0 0 0 0 0 1 1 0 1 1 1 0 0 0
Pinnipedia 0 0 0 0 0 1 0 0 1 1 1 0 0 1
Cetacea 0 0 0 0 0 1 0 1 1 1 1 0 0 0
Sciuridae 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Muridae 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Cheloniidae 1 0 1 0 0 1 1 0 0 1 1 0 0 0
Chelydridae 1 0 1 0 0 1 1 0 0 1 1 0 0 0
Dermochelyidae 1 0 1 0 0 1 1 0 0 1 1 0 0 0
Emydidae 1 0 1 0 0 1 1 0 0 1 1 0 0 0
Testudinidae 1 0 1 0 0 1 2 0 0 1 1 0 0 0
Trionychidae 1 0 1 0 0 1 1 0 0 1 1 0 0 0
Sphenodontidae 1 1 1 0 0 1 2 0 0 1 1 0 0 0
Scincidae 1 [01] 1 0 [03] 1 2 0 [12] 1 1 0 0 1
Anniellidae 1 1 1 0 0 1 2 0 0 0 1 0 0 1
Lacertidae 1 1 1 0 0 1 2 0 [12] 0 1 0 0 1
Dibamidae 0 0 0 0 3 0 1 0 0 0 1 0 0 0
Amphisbaenia 0 0 0 0 3 1 1 0 0 0 1 0 0 0
Iguanidae 1 1 1 0 0 1 2 0 [12] 0 1 0 0 1
Agamidae 1 1 1 0 0 1 2 0 [12] 0 1 0 0 1
Chamaeleonidae 0 0 1 0 0 1 2 0 [12] 0 1 0 0 1
Pygopodidae 0 0 1 0 3 1 1 0 0 0 1 0 0 1
Gekkonidae 1 [01] 1 0 [03] 1 [12] 0 [12] 0 1 0 0 1
Lanthanotidae 1 1 1 0 0 1 2 0 [12] 0 1 0 0 1
Varanidae 1 1 1 0 0 1 2 0 [12] 0 1 0 0 1
Scolecophidia 0 0 0 0 3 0 1 1 0 1 1 0 0 0
Alethinophidia 0 0 0 0 3 0 0 1 0 1 1 0 0 0
Crocodylia ? ? 0 0 0 1 1 0 0 1 1 0 0 0
Passeriniformes 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Strigiformes 0 0 0 0 0 1 1 0 0 1 1 0 0 0
Falconiformes 0 0 0 0 0 1 2 0 0 1 1 0 0 0
Phalacrocoracidae 0 0 0 0 0 1 1 0 0 1 1 0 0 0
Sphenisciformes 0 0 0 0 0 1 0 0 0 1 1 0 0 0
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DATA MATRIX Continued

29 30 31 32 33 34 35 36 37 38 39 40 41 42

Myxiniformes – – 0 0 0 0 – – – – 0 – 0 0
Petromyzontiformes 0 0 0 0 0 0 0 0 1 0 2 1 0 1
Chondrichthyes 1 0 2 0 1 [013] 1 1 [01] 1 0 – 0 1
Acipenseriformes 1 0 2 0 0 0 1 0 0 0 1 [01] 0 1
Semionotiformes 1 0 2 0 0 0 1 0 0 1 2 1 0 1
Latimeria 1 0 2 1 0 0 0 0 0 1 0 ? 0 1
Dipnoi 1 0 1 0 0 1 0 0 0 1 2 ? 0 1
Teleostei 1 0 [12] [012] [01] [013] 1 [012] [01] 1 [012] [01] [012] 1
Anura 1 2 [12] [01] 1 1 1 [01] 0 1 2 1 0 1
Caudata 1 1 [012] 0 1 1 1 0 ? 1 2 1 0 1
Gymnophiona ? ? 0 0 0 0 0 1 0 1 2 0 0 1
Ornithorhyncus 1 2 2 0 1 ? 1 1 0 1 2 0 0
Tachyglossidae 1 2 2 0 1 ? 1 2 0 1 2 0 0 1
Didelphidae 1 2 0 0 1 ? 3 0 0 1 2 ? 0 1
Macropodidae 1 2 0 0 1 ? 3 2 0 1 2 ? 0 1
Notoryctidae ? ? 1 0 0 0 – – – – ? ? 0 0
Soricidae 1 2 0 0 1 3 1 1 0 1 1 0 0 1
Talpidae 1 2 0 0 1 3 1 1 0 1 1 0 0 1
Primates 1 2 0 0 1 3 1 2 [01] 1 1 0 [012] 1
Felidae 1 2 0 0 1 3 1 2 0 1 1 0 0 1
Mustelidae 1 2 0 0 1 3 1 1 0 1 1 0 0 1
Sirenia 1 2 0 0 1 3 1 2 0 1 1 0 0 1
Pinnipedia 1 2 0 0 1 3 1 0 0 1 1 0 0 1
Cetacea 1 2 0 0 1 3 1 0 0 1 1 0 0 1
Sciuridae 1 2 0 0 1 3 1 2 1 1 1 0 0 [01]
Muridae 1 2 0 0 1 3 1 1 0 1 1 0 0 1
Cheloniidae 1 2 2 2 2 0 3 0 0 0 2 1 0 1
Chelydridae 1 2 2 2 2 0 3 0 0 0 2 1 0 1
Dermochelyidae 1 2 2 2 2 0 3 0 0 0 2 1 0 1
Emydidae 1 2 2 2 2 0 3 1 0 0 2 1 [01] [01]
Testudinidae 1 2 2 2 2 0 3 2 0 0 2 1 0 1
Trionychidae 1 2 2 2 2 0 3 0 0 0 2 1 1 1
Sphenodontidae 1 2 2 2 2 3 2 1 0 0 2 ? 1 1
Scincidae 1 2 2 2 2 3 2 2 0 0 2 1 [01] 0
Anniellidae 1 2 2 2 2 3 2 1 0 0 2 1 0 0
Lacertidae 1 2 2 2 2 3 2 2 0 0 2 1 [01] 0
Dibamidae 1 2 0 0 0 0 – – – – 1 ? 0 0
Amphisbaenia 1 2 [12] [01] 0 0 – – – – 2 ? 0 0
Iguanidae 1 2 2 2 2 3 2 2 0 0 2 1 [01] 0
Agamidae 1 2 2 2 2 3 2 2 0 0 2 1 [01] 0
Chamaeleonidae 1 2 1 2 2 3 2 2 0 0 2 1 2 0
Pygopodidae 1 2 2 2 2 3 [03] 0 0 0 2 1 0 0
Gekkonidae 1 2 [012] [12] 2 3 2 2 [01] 0 2 1 0 [01]
Lanthanotidae 1 2 2 2 2 3 2 2 0 0 2 1 1 0
Varanidae 1 2 2 2 2 3 2 2 0 0 2 1 1 0
Scolecophidia 1 1 0 0 2 0 4 0 0 1 2 0 0 1
Alethinophidia 1 [12] 0 0 2 [023] 4 [01] [01] 1 2 0 0 [01]
Crocodylia 1 2 2 0 2 2 3 1 0 ? 2 0 0 1
Passeriformes 1 2 2 2 2 3 2 2 0 ? 2 1 2 1
Strigiformes 1 2 2 2 2 3 2 1 0 ? 2 1 0 1
Falconiformes 1 2 2 2 2 3 2 2 0 ? 2 1 2 1
Phalacrocoracidae 1 2 2 2 2 3 2 1 0 ? 2 1 2 1
Sphenisciformes 1 2 2 2 2 3 2 1 0 ? 2 1 2 1
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DATA MATRIX Continued

43 44 45 46 47 48 49 50 51 52 53 54 55 56

Myxiniformes 0 0 0 – – – ? 2 ? ? 0 – – 0
Petromyzontiformes 1 0 0 0 0 0 1 2 1 0 0 0 0 0
Chondrichthyes 1 0 0 0 0 0 1 [012] 1 0 0 0 1 [02]
Acipenseriformes 1 [01] 0 ? 1 1 1 2 1 [01] 0 0 1 0
Semionotiformes 1 1 0 1 1 1 1 2 1 1 0 0 2 0
Latimeria 1 0 0 ? 1 1 1 2 1 1 0 0 1 0
Dipnoi [01] [01] 0 ? [01] 1 1 1 1 0 0 0 1 0
Teleostei 1 1 0 1 0 1 1 1 1 1 0 0 [12] 0
Anura 1 1 0 1 [01] 1 1 2 1 1 0 0 0 0
Caudata 1 1 0 1 0 1 1 1 1 0 0 [01] 0 0
Gymnophiona [01] 0 0 0 0 0 ? 0 1 0 0 0 0 0
Ornithorhyncus 1 1 1 0 0 1 0 ? 1 1 0 0 0 ?
Tachyglossidae 0 0 0 0 0 0 ? 1 1 0 0 0 ? 0
Didelphidae 1 1 0 ? 1 0 ? 1 1 1 0 0 2 0
Macropodidae 1 1 0 ? 1 0 ? 1 1 1 0 0 ? 0
Notoryctidae 0 0 0 – – – – ? ? ? 0 ? 0 0
Soricidae [01] 0 0 0 0 0 1 1 1 1 0 0 0 0
Talpidae 1 0 0 0 0 0 1 1 1 1 0 0 0 0
Primates 1 0 0 0 0 0 1 1 1 1 0 0 [01] [02]
Felidae 1 0 0 0 0 0 1 1 1 1 0 0 1 [02]
Mustelidae 1 0 0 0 0 0 1 1 1 1 0 0 1 0
Sirenia 1 0 0 0 0 0 1 1 1 1 0 0 1 0
Pinnipedia 1 0 0 0 0 0 1 1 1 1 0 0 1 [02]
Cetacea 1 0 0 0 0 0 1 1 1 1 0 0 1 0
Sciuridae 1 0 0 0 0 0 [01] 1 1 1 0 0 0 0
Muridae 1 0 0 0 0 0 1 1 1 10 0 0 0 0
Cheloniidae 1 1 0 1 1 1 1 1 1 0 0 0 0 1
Chelydridae 1 1 0 1 1 1 1 1 1 0 0 0 0 1
Dermochelyidae 1 1 0 1 1 1 1 1 1 0 0 0 0 1
Emydidae 1 1 0 1 1 1 1 1 1 0 0 0 0 1
Testudinidae 1 1 0 1 1 1 1 1 1 0 0 0 0 0
Trionychidae 1 1 0 1 1 1 1 1 1 0 0 0 0 1
Sphenodontidae 1 0 1 ? 1 1 1 0 1 0 0 0 0 0
Scincidae 1 1 0 1 1 1 0 2 1 0 1 0 0 0
Anniellidae 1 1 0 1 1 1 0 2 1 1 0 0 0 0
Lacertidae 1 1 0 1 1 1 0 2 1 0 2 0 0 0
Dibamidae 0 0 0 – – – – 2 1 0 0 0 0 0
Amphisbaenia 1 0 0 0 [01] [01] 0 2 1 0 0 0 0 0
Iguanidae 1 1 0 1 1 1 0 2 1 0 2 0 0 0
Agamidae 1 1 0 1 1 1 0 2 1 0 2 0 0 0
Chamaeleonidae 1 1 0 1 1 1 0 2 1 0 2 0 0 0
Pygopodidae 1 1 0 1 0 1 0 2 1 0 1 0 0 0
Gekkonidae 1 1 1 1 1 1 [01] 2 1 0 1 0 0 [02]
Lanthanotidae 1 1 0 1 1 1 0 2 1 0 2 0 0 ?
Varanidae 1 1 0 1 1 1 0 2 1 0 2 0 0 0
Scolecophidia [01] 0 0 0 0 0 1 0 1 1 0 1 0 0
Alethinophidia [01] [01] 0 0 0 0 1 0 1 1 [01] 1 0 [012]
Crocodylia 1 1 0 1 0 1 1 0 1 0 0 1 2 0
Passeriformes 1 1 0 1 1 1 1 1 1 0 2 0 0 0
Strigiformes 1 1 0 1 1 1 1 1 1 0 2 0 0 0
Falconiformes 1 1 0 1 1 1 1 1 1 0 2 0 0 [02]
Phalacrocoracidae 1 1 0 1 1 1 1 1 1 0 2 0 0 1
Sphenisciformes 1 1 0 1 1 1 1 1 1 0 2 0 0 0
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DATA MATRIX Continued

57 58 59 60 61 62 63 64 65 66 67 68 69

Myxiniformes 0 0 0 0 0 0 0 0 0 0 0 0 0
Petromyzontiformes 0 0 0 0 0 0 0 2 0 1 0 0 0
Chondrichthyes 0 [012] [01] 1 1 [012] 0 1 2 0 0 0 0
Acipenseriformes 0 1 0 0 0 [01] 0 0 0 0 0 0 0
Semionotiformes 0 1 0 0 0 0 0 1 2 0 0 0 0
Latimeria 0 0 0 ? ? 0 0 0 0 0 0 0 0
Dipnoi 0 0 0 0 0 [02] 0 0 0 0 0 0 0
Teleostei [01] [02] [01] 1 1 [012] 0 2 1 0 1 0 0
Anura 0 [012] 0 1 1 [012] 0 1 2 0 1 0 0
Caudata 0 0 0 1 1 0 0 2 2 0 0 0 0
Gymnophiona 0 0 0 0 0 0 0 0 0 0 0 0 0
Ornithorhyncus 0 0 0 0 2 0 0 0 0 0 0 0 0
Tachyglossidae 0 0 0 2 0 0 0 0 0 0 0 0 0
Didelphidae 0 0 0 1 0 1 ? 0 0 0 1 0 0
Macropodidae 0 0 0 1 0 2 ? 0 0 0 1 0 0
Notoryctidae 0 0 0 0 0 0 – – – 0 1 0 0
Soricidae 0 0 0 1 0 0 0 0 0 0 0 0 0
Talpidae 0 0 0 1 0 0 0 0 0 0 0 0 0
Primates 0 0 0 1 1 0 2 0 0 0 1 0 1
Felidae 0 [01] 0 1 1 [01] 2 0 0 0 1 0 0
Mustelidae 0 [02] 0 1 1 [012] 2 0 0 0 1 0 0
Sirenia 0 2 0 2 1 2 0 0 0 0 0 0 0
Pinnipedia 0 [02] 0 2 1 1 2 0 [02] 0 1 0 1
Cetacea 0 2 [01] 2 1 2 [02] 0 [02] 0 [01] 0 [01]
Sciuridae 0 0 0 1 1 0 2 0 0 0 1 0 0
Muridae 0 0 1 0 0 0 0 0 0 1 0 0
Cheloniidae 0 0 0 2 0 0 1 0 0 0 2 0 0
Chelydridae 0 0 0 2 0 0 1 0 0 0 2 0 0
Dermochelyidae 0 0 0 2 0 0 1 0 0 0 2 0 0
Emydidae 0 0 0 2 0 0 1 0 0 0 2 0 0
Testudinidae 0 0 0 2 0 0 1 0 0 0 2 0 0
Trionychidae 0 0 0 2 0 0 1 0 0 0 2 0 0
Sphenodontidae 0 0 0 1 1 1 1 0 0 0 2 0 0
Scincidae [01] 0 0 1 1 0 [01] 0 0 0 2 2 0
Anniellidae 0 0 1 1 1 1 0 0 0 2 2 0
Lacertidae 0 0 0 1 1 0 1 0 0 [02] 2 2 0
Dibamidae 0 0 0 0 0 0 0 0 0 0 0 0 0
Amphisbaenia 0 0 0 0 0 0 0 0 0 0 0 0 0
Iguanidae [01] 0 0 1 1 0 1 0 0 [02] 2 2 0
Agamidae 0 0 0 1 1 0 1 0 0 [02] 2 2 0
Chamaeleonidae 0 0 0 1 1 0 1 0 0 [02] 2 2 0
Pygopodidae 0 0 0 0 0 1 1 0 0 0 [02] [02] 0
Gekkonidae 1 [01] [01] 1 1 [01] [01] 0 0 0 [02] [02] 0
Lanthanotidae 0 0 0 1 1 0 1 0 0 0 2 2 0
Varanidae 0 0 0 1 1 0 1 0 0 0 2 2 0
Scolecophidia 0 0 0 0 0 0 0 0 0 0 0 0 0
Alethinophidia 1 [012] 0 [12] 1 [012] 0 1 2 0 0 0 0
Crocodylia 0 0 0 1 1 1 1 0 0 0 2 0 0
Passeriformes [012] 0 0 1 1 0 1 0 0 2 2 2 0
Strigiformes 1 0 0 1 1 0 1 0 0 2 2 2 0
Falconiformes 1 0 0 1 1 0 1 0 0 2 2 2 0
Phalacrocoracidae 0 0 0 2 1 0 1 0 0 2 2 0 0
Sphenisciformes 0 0 0 2 1 0 1 0 0 2 2 0 0


